本周日(5月9日)18:30开始的讨论班将由俺继续为大家鼓吹反常。
关于手征反常(chiral anomaly),我在之前的讨论中讲到了Fujikawa的工作,及其在强相互作用有效理论中的影响。
在下次讨论中,如果可能的话,我将首先花一点点时间介绍反常的拓扑背景,亦即其与鼎鼎大名的Atiyah-Singer指标定理的联系(该定理被Singer通俗地解释为“非常可能听到鼓的形状”[*])。不过在这方面我是标准的外行,因此并不打算进入细节。
在其余大部分篇幅中,我将讨论共形对称性,特别是尺度不变性。事实上,曾经令人困惑的重整化与重整化群的概念,都可以理解为尺度不变性的反常。在后天的讨论班中,我们将定量地将此观念表达出来。
以下是我具体计划要讲的内容(其实是我尚未写好的note的abstract)。不排除临时的变化:
This is the note for the second half of my seminar talks on anomalies. At first, We explain very briefly the topological nature of the chiral anomaly. Then we investigate the theory of renormalization group (RG) from the viewpoint of anomalies. Basics of conformal transformations are introduced as necessary background knowledge. Then it is shown that the breaking of the scale invariance after quantization (scale anomaly) directly leads to the concept of RG. In particular, the famous Callan-Symanzik equation, which serves as a quantitative description of RG, is simply the anomalous Ward identity associated with scale anomaly. The QED beta function is also calculated at one-loop level from an evaluation of the scale anomaly.
内容:
1) A Brief Review of Chiral Anomaly
2) Anomaly and the Index Theorem
3) Conformal Transformation
4) Scale Anomaly and Renormalization Group
5) QED beta function from scale anomaly
讲完之后我会给出一个note。
参考文献(可能不完全):
[1] K. Fujikawa, Phys. Rev. D 21, 2848 (1980);
[2] B. A. Bertlmann: Anomalies in Quantum Field Theory, Oxford, 2000;
[3] P. D. Francesco et al: Conformal Field Theory, Springer, 1997;
[4] S. Coleman: Aspects of Symmetry, Cambridge, 1985;
[5] C. G. Callan: Phys. Rev. D 2, 1541(1970);
[6] K. Fujikawa & H. Suzuki: Path Integrals and Quantum Anomalies, Oxford, 2004
[*] 引自侯伯元、侯伯宇:《物理学家用微分几何》。请注意断句:物理学/家用微分几何。
其中[6]可点此处下载。感谢繁星客栈上某同学的上传。
没有评论:
发表评论