2010年3月19日星期五

从全息原理到牛顿定律

继续上篇的讨论。


Verlinde的主旨,是希望将全息原理作为更基本的假设,并由它推导出我们已知的引力理论,如牛顿力学或广义相对论。为了解释这个想法,Verlinde反复引用了弹性理论的例子:一百多年前的人们并不知道什么是原子、什么是晶格,但这并不妨碍他们建立关于固体弹性的宏观理论。只是当人们认识到了原子之后,才可以重新用原子理论的一套方法重新推导出已有的弹性理论。Verlinde认为,牛顿力学或者广义相对论恰好相当于宏观的弹性理论,而全息原理就扮演原子理论的角色。


这自然是恰当的类比。然而引力与弹性理论的不同在于,我们今天还处在“前Planck物理”时代,因此并无完整的全息原理可供使用。所以要找到一个合适的全息假设,我们只能从现有的理论入手,管窥蠡测地去寻找全息原理的蛛丝马迹。这虽然困难,却并非不可能。因为,虽然微观理论深藏于极其微小的Planck尺度,但是那里发生的一些秘密会泄漏到我们可见的世界中,这就是黑洞熵。


在经典情形,黑洞只有极少的自由度,即质量、角动量和内部对称性的荷(例如电荷)。这就是所谓的无毛定理(No-hair theorem)。然而当考虑量子效应后,黑洞就有非零的熵,且正比于其表面积。这一点最初似乎由Bekenstein提出。事实上,如果黑洞熵正比于其表面积,则当我们向黑洞中投入一颗质点后,黑洞的熵和表面积都会增加。可是人们当时已经知道,当质点以恰当的方式被投入Kerr黑洞时,黑洞的质量与表面积并不增加。


Bekenstein注意到[1],这个结论基于“质点”的假设。当我们考虑了量子力学后,任何粒子,即使是基本粒子,都有一个尺度,它或者是粒子的Compton波长,或者是Schwarzschild半径。当这样一个半径不为零的“球状物”被投入黑洞时,黑洞的半径确有不为零的增长。Bekenstein将之视为黑洞熵的增长。


黑洞有熵,意味着它包含着巨大的微观自由度。不仅如此,黑洞还有温度,还有热辐射。这就是著名的Hawking辐射。当然,这也是与经典理论直接相悖的结论:根据经典广义相对论,黑洞不仅无毛,而且一毛不拔。


为了理解这个结果,Unruh给出了一个有趣的解释[2],现在人们称之为Unruh效应。它说,在惯性系中的观察者看来空无一物的真空,在加速的非惯性系观察者看来,却是一个有温度的“热浴”,这个加速观者将看到无数的作热运动的粒子。简单地讲:你只要在真空中兜圈子,周围就会变热。你跑得越快,温度就越高。


这个有悖直觉的结论其实并不太出乎意料。关键在于,加速观者与惯性观者所用的钟表不同:它们之间并不是简单的Lorentz变换,而是一个非平凡的广义坐标变换。另一方面,我们知道,量子场论中的真空实际上是指万物的基态:并非一无所有,而只是悄无声息而已。一旦当你进入到一个加速的参考系中,由于你所携带钟表变了节拍,原来悄无声息的基态就变得喧闹起来。这就是热背景的由来。


Unruh效应虽然是对平直空间而言,但与Hawking辐射其实是一件事情。你只需注意到,自由降落的参考系与惯性系无异:无论在下坠的电梯还是漂浮在太空中的飞行器,你在其中感受到的物理是一样的,尽管心情可能完全不同。所以,一个自由降落进黑洞的观测者就相当于惯性观察者,他不知道什么是黑洞,当他穿过黑洞边界时不会出现任何异常。自然,他也看不见黑洞辐射。然而在它看来,远处的观察者相对于它在作加速运动。而根据Unruh效用,相对于惯性系作加速运动的观察者必看到热辐射:这就是Hawking辐射。


好了,以上就是全部的准备工作。接下来我们展示Verlinde的推导。[3]


Verlinde说引力是熵力,即熵增原理的宏观效果。比如渗透现象就是一种熵力。在给定的温度T下,根据能量守能,熵力F可由熵变ΔS确定为:
 
因此只要知道了温度T和熵变ΔS对位移Δx的依赖,即可求出熵力。



不要忘记全息原理:它说,信息储存在界面上。首先考虑局域的情形,我们取一小块屏:



大致上我们可以将此屏视为空间的边界。这块屏的左边是什么我们不清楚,而它的右边则是我们已知的空间。现在,在其右端距离一个Compton波长左右的位置Δx放置一颗质量为m的粒子,全息原理假定,由此粒子贡献于屏上的熵ΔS为:



这就是熵变对位移的关系。至于温度,我们有Unruh效应:对于一个加速度为a的观察者,“真空”的温度由下式给出:



由以上三式,消去熵变ΔS和温度T,瞧瞧我们得到了什么:



以上是一个局域的推导。接下来我们取一块完整的屏,一张包围了质量M的球面。



根据全息原理,假定该球面所包围的微观自由度N正比于其表面积A。由量纲的考虑补充进适当的常数,就是:


 


再假设此球体内的能量均分于各微观自由度,即Boltzmann能量均分:



而该能量E由球面所包含的质量给出:



另外,球的表面积A为:



则由以上四式,再加上熵力的定义(1)与全息假设(2),不难得到:



OK,我们暂停此处,不多解释。


 


给出参考文献,供希望知道细节的同学查阅:


[1] J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973)


[2] W. G. Unruh, Phys. Rev. D 14, 870 (1976)


[3] E. Verlinde, arXiv: 1001.0785 (2010)

没有评论:

发表评论